Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Natural Product Sciences ; : 168-174, 2016.
Article in English | WPRIM | ID: wpr-192322

ABSTRACT

Anti-melanogenic effects of amaranth (AT), one of the key source of squalene, were investigated in melanocytes. Amaranth seed powder was extracted with water and melan-a cells were treated with various concentrations of AT. By using HPLC, content of myo-inositol, one of potential active components, was measured in the crude extract of AT.AT reduced the melanin content in melan-a melanocytes and down-regulated melanogenic enzyme activity such as tyrosinase, TRP-1 and TRP-2. By regulating melanogenic enzyme activity, AT may be a potential natural source for whitening agent. Myo-inositol was detected in AT by HPLC and may be one of the active compounds from AT involved in the regulation of anti-melanogenesis. In this study, we demonstrated that AT has anti-melanogenesis properties. This new function of amaranth may be useful in the development of new skin-whitening products and its value as food.


Subject(s)
Amaranthus , Chromatography, High Pressure Liquid , MART-1 Antigen , Melanins , Melanocytes , Monophenol Monooxygenase , Squalene , Water
2.
Biomolecules & Therapeutics ; : 85-93, 2016.
Article in English | WPRIM | ID: wpr-20734

ABSTRACT

We already reported that genetically engineered resveratrol-enriched rice (RR) showed to down-regulate skin melanogenesis. To be developed to increase the bioactivity of RR using calli from plants, RR was adopted for mass production using plant tissue culture technologies. In addition, high-pressure homogenization (HPH) was used to increase the biocompatibility and penetration of the calli from RR into the skin. We aimed to develop anti-melanogenic agents incorporating calli of RR (cRR) and nanoparticles by high-pressure homogenization, examining the synergistic effects on the inhibition of UVB-induced hyperpigmentation. Depigmentation was observed following topical application of micro-cRR, nano-calli of normal rice (cNR), and nano-cRR to ultraviolet B (UVB)-stimulated hyperpigmented guinea pig dorsal skin. Colorimetric analysis, tyrosinase immunostaining, and Fontana-Masson staining for UVB-promoted melanin were performed. Nano-cRR inhibited changes in the melanin color index caused by UVB-promoted hyperpigmentation, and demonstrated stronger anti-melanogenic potential than micro-cRR. In epidermal skin, nano-cRR repressed UVB-promoted melanin granules, thereby suppressing hyperpigmentation. The UVB-enhanced, highly expressed tyrosinase in the basal layer of the epidermis was inhibited by nano-cRR more prominently than by micro-cRR and nano-cNR. The anti-melanogenic potency of nano-cRR also depended on pH and particle size. Nano-cRR shows promising potential to regulate skin pigmentation following UVB exposure.


Subject(s)
Animals , Epidermis , Guinea Pigs , Guinea , Hydrogen-Ion Concentration , Hyperpigmentation , Melanins , Monophenol Monooxygenase , Nanoparticles , Particle Size , Plants , Skin Pigmentation , Skin
SELECTION OF CITATIONS
SEARCH DETAIL